Live imaging system for visualizing nuclear pore complex (NPC) formation during interphase in mammalian cells.

نویسندگان

  • Haruki Iino
  • Kazuhiro Maeshima
  • Reiko Nakatomi
  • Shingo Kose
  • Tsutomu Hashikawa
  • Taro Tachibana
  • Naoko Imamoto
چکیده

Nuclear pore complexes (NPCs) are 'supramolecular complexes' on the nuclear envelope assembled from multiple copies of approximately 30 different proteins called nucleoporins (Nups) that provide aqueous channels for nucleocytoplasmic transport during interphase. Although the structural aspects of NPCs have been characterized in detail, NPC formation and its regulation, especially during interphase, are poorly understood. In this study, using the temperature-sensitive RCC1 mutant tsBN2, a baby hamster kidney 21 cell line, we found that a lack of RCC1 activity inhibited NPC formation during interphase, suggesting that RanGTP is required for NPC formation during interphase in mammalian cells. Utilizing the reversible RCC1 activity in tsBN2 cells, we established a live-cell system that allows for the inhibition or initiation of NPC formation by changes in temperature. Our system enables the examination of NPC formation during interphase in living cells. As a lack of RCC1 decreased some Nups containing unstructured phenylalanine-glycine repeats in the NPC structure, we propose that RCC1 is also involved in maintaining NPC integrity during interphase in mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase

In metazoa, new nuclear pore complexes (NPCs) form at two different cell cycle stages: at the end of mitosis concomitant with the reformation of the nuclear envelope and during interphase. However, the mechanisms of these assembly processes may differ. In this study, we apply high resolution live cell microscopy to analyze the dynamics of single NPCs in living mammalian cells during interphase....

متن کامل

Nuclear size, nuclear pore number and cell cycle.

In eukaryotic cells, the nucleus is a complex and sophisticated organelle containing genomic DNA and supports essential cellular activities. Its surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It has been observed that the nuclear volume and the number of NPCs almost doubles during interphase in dividing cells, but th...

متن کامل

Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells

The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121-green fluorescent protein (GFP) and GFP-Nup153, and GFP-lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, stron...

متن کامل

Long live the pore

n the first in vivo characterization of nuclear pore complex (NPC) dynamics in mammalian cells, Daigle et al. (page 71; see also the Comment on page 17) have found that NPCs are remarkably stable complexes that appear to be anchored to a protein network in the nuclear envelope. The work also demonstrates the feasibility of tracking single protein complexes in living cells. By fusing GFP tags to...

متن کامل

Assembly of nuclear pore complexes mediated by major vault protein.

During interphase growth of eukaryotic cells, nuclear pore complexes (NPCs) are continuously incorporated into the intact nuclear envelope (NE) by mechanisms that are largely unknown. De novo formation of NPCs involves local fusion events between the inner and outer nuclear membrane, formation of a transcisternal membranous channel of defined diameter and the coordinated assembly of hundreds of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes to cells : devoted to molecular & cellular mechanisms

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2010